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Is a Bell-Type Inequality for Nondicotomic Observables
a Good Test of Quantum Mechanics?
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Abstract

It is enquired whether a Bell-type inequality for nondicotomic observables established in
a preceding paper can be a suitable tool for testing the prediction of quantum mechanics
(Q.M.) concerning the correlations s 4 - 4 sg - b observable in a decay of an unpolarized
particle of arbitrary spin into two massive particles A and B of spins s 4, sp, respectively.
It is found that such correlations cannot violate the inequality for spins of the subsystems
larger than ¥ and suggested that, apart from the possibility of finding different sensitive
observables, feasible and real tests of QM against local hidden variable theories will prob-
ably always imply photon processes, owing to the simplification introduced in the density
matrix of the final state by the dicotomic nature of the photon spin variables.

1. Introduction

The correlation (o, "4 65 by (@ and b are unit vectors in two arbitrary
directions) observed in a decay of a spin-0 system with two massive spin-3
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particles 4 and B as decay products [as in the Einstein, Podolski and Rosen
(1935) — EPR — paradox in the version of Bohm and Aharonov (1957)] has
been shown by Bell (1964) to satisfy an inequality in a theory of local hidden
variables (LHV). Such an inequality has been proved to hold also when the
correlations in question are computed as mean values in mixtures of quantum
mechanical states of the first kind (Baracca et al., 1975), while it can be
violated for suitable choices of the directions if they are computed in full
quantum mechanics (QM).! Extended to the case of two-photon decays or
cascades (either in the singlet or in the triplet M, = 0 state),? Bell’s inequality
has been tested in experiments. The situation is turning in favor of QM
against Bell’s inequality (Kasday, 1971; Freedman and Clauser, 1972; Faraci
et al., 1974; Holt and Pipkin, 1975; Clauser, 1976a, b; Lamehi-Rachti and
Mittig, 1975; Fry and Thomson, 1976; Wilson et al., 1976; Bruno et al., 1977),
but it is not yet completely clarified, therefore suggesting a broader investiga-
tion of checks which may eventually falsify or verify QM in this special aspect.?
To this end an extension of Bell’s inequality to nondicotomic observables
with a discrete and limited spectrum was considered and shown to hold for
mixtures of states of the first kind as well as for local hidden variables
(Baracca et al., 1976), and an investigation was started in order to verify
whether a correlation may be found that could violate it.* The results of the
above-mentioned paper (Baracca et al., 1976) were as follows:

(2) As far as the correlation (s, -4 sz b) is concerned, it was again com-
puted as a first step for the special case of the decay of a spin-0 system,
but now considering s 4 and sg to be arbitrary spins of the massive 4
and B particles. For simplicity, moreover, s 4 =sp was assumed and
orbital angular momentum neglected. The outcome was that in the

[

This paper is a sequel to an investigation carried out in Baracca et al. (1976), to which
we refer for the terminology. We recall that a state of the first kind is one thatisa
product of states of the constituent systems, and a state that is not a product is said

to be of the second kind. In full quantum mechanics decay states, such as the ones we
deal with, are described by states of the second kind and give rise, as far as the statistics
of the observation on the subsystems is concerned, to mixtures of the second kind, as
compared to proper mixtures or mixtures of quantum mechanical states of the first
kind.

The extension, although formally very simple, is not trivial, since the dicotomic nature
of the photon spin is related to its zero mass. See, e.g. Bohm and Aharonov (1960).

This aspect deals in fact only with the treatment of interacting systems as long as corre-
lations are involved, and it could even not involve at all the other aspects of the theory.

It is strictly related — through mixtures of the second kind — also with the “‘measurement
problem”, whose solution seems in fact incompatible with the linear character of the
Schrodinger equation for interacting systems. See also Baracca et al. (1975).

We recall that dynamical models can be conceived, where spontaneous decays of the
pure state of the composite system to a mixture may occur (Baracca et al., 1975; and
Bohm and Hiley, 1976); these models would also be tested by Bell-type inequalities.
The above spontaneous mechanism seems to be required in the light of the considera-
tion that states of the second kind are requested for the description of localized
systems (see also footnote 2, page 474, in Baracca et al., 1976).
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previous hypothesis such correlation cannot discriminate between QM
and the Bell-type inequality for spins larger than 4.

(b) In a completely general case (arbitrary values of the total angular mo-
mentum of the decaying systems and of the spin and orbital momentum
of the final state) a special set of operators was found that allows one
to distinguish between the two cases in any possible case.

A full generalization of these results is needed. In what concerns point (b)
the problem is to clarify the most general set of sensitive observables and a
real experimental test in the best conditions.

At present, we turn to point (a) and consider in this paper a rather general
extension of the investigation carried on in Baracca et al. (1976); namely, we
deal with the correlation P(a; b) ={JM|s, - d sg- b|JM) observable in a decay
of an unstable particle of arbitrary spin (J, M) into two massive particles 4
and B of spins s 4, Sp, respectively (s 4 being in general different from sp),
taking into account orbital angular momenta. Bell’s inequality extended to
this case reads (Baracca et al., 1976)

| P(a, b) — P(a,c)| £ [Pd,b) + P(d', c)] <2s45p (L.

For mixtures of states of the first kind or LHV this inequality has to be
satisfied, whereas in QM there might be an appropriate choice of 4, b, é, d'
that leads to a violation. When this is not the case, the observable we are con-
sidering does not allow a good test of QM in the sense of Bell’s inequality.
Computation of the P(a, b)’s implies evaluating the mean value of variable
s4 - dsg* b in a state |JM) of the two-body decay products, hereafter to be
referred to as | JM )y (f for final); for a given initial state of the decaying system,
|JM);, transitions to | JM), states can be classified according to the different
values that the channel spin S(S = 84 + sp) and the relative orbital angular
momentum L may assume in the transition, even when parity conservation is
requested. The choice of this coupling scheme is first suggested by the fact
that the correlation does not involve orbital angular momenta; its practical
usefulness arises also from the fact that in general the decay is dominated by
the transition in a channel with given L and §: This is, at least, a realistic
hypothesis if, e.g., spin orbit or tensor potentials are not very relevant in
the final state interaction (FSI) and in general when L-S coupling is good
(e.g., SU, in nuclear physics or SUy in particle physics). The importance of
this assumption arises from the factorization it allows of physics and geometry,
as will be shown in the next section. In this paper we limit ourselves to con-
sidering the decay of an unpolarized system.

Under the above conditions and assumptions it is proved that again, for the
operator considered here, Bell’s inequality cannot be violated by QM for spins
of the subsystems larger than 4. This general result is linked to the fact that the
density matrix describing the final state depends on the number of independent
parameters which is rapidly increasing with the spins of the subsystems; a larger
set of observations than involved by Bell’s inequality is therefore needed to
determine the density matrix and hence discriminate between QM and LHV.
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The effectiveness of the checks based on experiments involving photons is

due to the simplification introduced in the density matrix by the dicotomic
nature of the photon spin variables. Feasible and real tests of QM will thus
probably always imply photon processes. Extensions of the class of photon
experiments already considered with this aim, along the lines discussed in this
paper, are being considered, together with a more thorough search of different
sensitive observables.

2. The Roles of Dynamics and Geometry in the Evaluation of the P(a, b)'s

Concerning the evaluation of the P(a, b)’s, we stress that there is an inter-
play between dynamics and geometry if the F.S.1. is properly taken into
account, the dynamics affecting the weight and phase of the various (L, )
channels. Under the hypothesis discussed in the Introduction, however, the
dynamics simply factorizes and drops out, if normalized correlations are duly
considered and computed as

P(a, b) = Ir_[gs_“i__fz_sli_b_] (2.1)
Trp
where p = |JM); p(JM is the density matrix describing the decay products.

The above hypothesis can in fact be formalized as follows. If the decay

process is “weak,” and described by the Hamiltonian H,,, one can write

| M) = QT 1L IM); (2.2)
where
1
Q=14+ —— ) 23
E—Hy—ie 2:3)

and H, is the free Hamiltonian of the initial and final particles and V the
final-state “strong” interaction Hamiltonian (Watson, 1952; Gell-Mann and
Goldberger, 1953; examples are given in Sakurai, 1964). We can then develop
the state | JM ), into the complete set |S(s 4, 5p)LJM):

[IM )y = gs [SGs4, sg)LIMNS(s 4, sg)L IMIQUTH IIMY;  (2.4)
Now, if the dynamics is such as to lead to a dominance of the transition in
a channel with given L and S, we can write
VM= 15(5 4, 55)LIM) 15 (2.5)
where
¥ =(8(s 4, sg)L IM{Q TH,, | IM; (2.6)

contains all the physical information. The density matrix for the decay products
can then be written

p=1r%1% ol (2.7)
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with
o =1S(s 4, sg)LIMXS(s4,5)L M | (2.8)

When (2.7) and (2.8) are substituted into (2.1), the dynamics drops out and we
get

P(a,b)="Tr[pW s, dsg-b]=(S(s4,58)LIM|sy dsg- b|S(s4,s5)LJM)
2.9)
We are thus left with the pure geometrical problem represented by equation
(2.9).5 This feature is an essential requirement for the generality of our calcu-

lation, although some specific study of a particular process may certainly
reveal the relevance of the interesting interplay between physics and geometry.

3. General Structure of the Correlation Functions
It is convenient to work with spherical components. Following the convention®

S. = Fh(s, £isy), So =8z 3G.1D

we have
P(a, b)=(S(s4,sp)LIM|[~3s 455 _(R-d—ip-8)® b +1p-b)
~ds4_spe(E-atp-a)E-b— - b)

+SA0SBOZA. AZA'B]IS(SA,SA)LJM> (32)

where we have introduced the basis vectors X, J, Z; the Cartesian frame may
of course be fixed referring to any two of the physical vectors of the problem
in a given order, for example, any couple of the directions appearing in (1.1),
but is otherwise completely arbritrary. Note that terms such as s 445+ or
s4_Sp_ do not appear in (3.2): This is due to the fact that the correlation
does not involve orbital angular momenta, which causes the third component
of the total spin mg = ms, + mgg to be conserved.

The terms in equation (3.2) may be rearranged as follows:

Pa,b) ={(S(s 4, sg)L IM|[~4(s 4455 +54_spi)d- b
— /2458 — Sa-sp) G a9 b—p-ax-b) (3.3)

+3(s448p_ t 54 Sp+ + 254 8p )2 47 b11S(s 4, s5)L JM)

One may wonder whether in this problem we still have to deal with states of the second
kind. In fact, owing to the dynamical assumption made, such states cannot have any-
thing to do with the composition of § and L. They do, however, arise when coupling of
the spins s 4, Sp to give the channel spin § is considered; it can be shown (see the
Appendix) that if states of the second kind are replaced by mixtures, a Bell-type inequal-
ity can be established.

Hereafter we follow the conventions used by Brink and Satchler (1968).
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This expression emphasizes the vector and tensor nature of the second and
third term, respectively. Indeed, if the expressions of the products of spheri-
cal vectors in (3.3) are solved for the irreducible tensor components, one
obtains, in obvious notation,

Tg))=(l/\/§}(SA+SB—+3A~SB+—SAOSBo) (3.43)
TG = (IN6)(sqvsa +54-5p+ *+ 254,58, (3.4b)
T6? = (N2 a+55- = 54-35+) (3.4¢)

We can then write
P(a, b) = (S(s4, sp)IM 1{— 3BT + 27(M)a - b
—G2NATV G 9 b — - ax b)
+ (V)T P2 a2 bY1S(s 4, sp)LIM) (3.5)
The matrix element of Tf)l) vanishes because

(Sts4,5p) I TN SCs4.5)) = [(25 + 1)3(254 + 1)(2s5 + D} /2

s 5 1
x{sq Sq 1)-Csyllsaliss (splisglisg) (3.6)
SB SB 1}

but the 94 symbol vanishes, as may be seen by interchanging the first two
columns and taking into account the fact that 2(S + 54 +sg) is always even.

Hereafter we shall consider the decay of an unpolarized system, which
zmphes averaging over M. Then also the contribution of the matrix element
of T 2) vanishes, as may be seen by applying the Wigner~Eckart theorem,
which reads

1
UM\ TPNIM) = S VITPND - <72Mo1IM) (3.7)
where
—J(J+1)
J JM) = 3.8
J2M01Ia> [(2J = DI + 1)(2J +3)] V2 (3.8)
When summing over M, 3M?% — J(J + 1) averages out to zero.
We are therefore left with the simplified expression
P, 5) = —— >S4, )M | — —= TSI S(s.0, sp)LIMYE- b (3.9
Pla, b) Z Gass)IM | = = T61S(00. 55 (3.9)
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Inserting complete sets of the states | Smg LM ~ mg) and taking into account
that 7'§®) does not act on the orbital components, one can rewrite equation
(3.9) as

1
Pa,b)=5 Z KSLIM | SmgLM — mg)|? -

Mg

’ (_. %) <S(SA s SB)mSl Tg)o)lS(SA s SB)ms>éf ’ 6 (3 10)

But

> WSLIM|SmglM — mg)|? =1 (3.11)
mg

whilst

(S(s.a,s5)ms| TG 1SG4, s5)ms)

=(8(s,4,55) TS 1S(5.4. 550 = (V3RS + 1) — 54 (54 + 1) —s5(s5 + 1)]

(3.12)
which can be thought of as arising from
76 =~ (IN3)s4" 35 (3.13)
and
S+l — +1)— +1
S, S _S(SH1) 8, (5A2 ) —splsgt+1) (3.14)

(when the eigenvalues are considered). So that we get finally

Aa,b)=—3[SS+1)~s5,(54 +1) —sglsg + 1)]d-b (3.15)

In the case of a spin-0 particle decaying into two spin-4 particles, we have
P(a,b) = —%ad- b, a result that can be checked at once by direct computation.
For two particles of spin j coupled to zero, P(a, b) = —3j(j + 1)d- b as found
in Baracca et al. (1976).

4. Bell-Type Inequality

When expression (3.15) is substituted into Bell’s inequality, equation (1.1),
one obtains

IS+ 1) —s (64 + 1) —splsp+ DI{la-b—a-clt[d b+a' ¢]r<2s,sz
(4.1)

where the amplitude of the function depending on S, s, S5 can be factorized
with no loss of generality. It is also easily checked that for integral or half-
integral 8,54, sp satisfying |54 — sz| <SS <5, +sp the above function can
never vanish, except for the trivial case S =s, =5z = 0, as can be physically
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understood on the basis of the vector model. Equation (4.1) is suitably
rewritten as

- (b~ O£ [a"(b+8)] <f(S,54.58) (4.2)
where we have posed
125458
708,54, 58) = 4°B (4.3)

IS(S+1) ~s4(s4 +1)—splsp *+ 1)]

1t is easily checked, as was realized in Baracca et al. (1976), that the lefi-hand
side of equation (4.2) is limited by — 24/2 and 2\/5, the maximum being
reached with the four vectors coplanar, @ 1 4, b | ¢ and the frame 4, 4’
rotated 7/4 with respect to the frame b,é.

It shall then be possible to violate Bell’s inequality, equation (4.2), for
certain configurations of the vectors d,d’, b, é, if the (positive) quantity
f(S,s4,5p) can turn out to be less than 24/2 for given values of S, 54, sg
satisfying the triangular inequalities.

We check at once that, for the case of two 4 spins coupled in a singlet
state, /= 2; in this special case we thus find again that the inequality can be
violated. If, on the other hand, the two spins couple in a triplet state, /= 6 and
the inequality cannot be violated for whichever choice of the angles.

More generally, we can reason as follows. If sy =55 =/, 5§ =0

f=6/G+1)
so that, except for the § case already examined, f always exceeds 2. If on
the other hand, s4 ¥ sg, say 54 > s, we observe that at fixed s4 and sg, f
shall vary between a minimum and a maximum value while S takes on the
values allowed by the triangular inequalities. In particular, the miminum value
is attained for the value of S that maximizes the denominator in (4.3), that is
S=s4 +sgwhenS(S+ 1)>s5,(54 +1)+s5(6sp+1),S=5, — sp when
S(S+ 1)<sy(s4 + 1) +sp(sg +1). But we have, in the first case, f'= 6, in the
second case f=635,/(s4 +1).

We can then conclude that, except for the case already studied, inequality
(4.2) can never be violated.

This conclusion can be stated in an expressive way, if the case of large 54
and sz, and also of large S, is considered. For this case of large quantum numbers,
we can put {S(s455) |54 * 551 5(s 455)) = 5455 cos (§4 §5). Then, making use of
equation {3.15), equation (4.2) can be cast into the form

lcos GaSp)l- {la-(b - )= [a" (b + )]} <6 (4.4
A violation of the generalized Bell’s inequality would then imply
—— e
cos (§455) > 32
Acknowledgments
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Appendix

We start from
Pla,b) ={(S(s 4, sg)LIM sy - dsg- b1S(sy, sg)LIM) (A1)

The state | S(s4 , sp)LJM) can be analyzed in two steps; first, one can write

[S(s4,55)LIM)= 2 |SmgLM — mgXSmgLM — mg|S(s4 ,sg)LJM)
mg

(A.2)
the states | SmgLlM — mg) can be further analyzed as follows:
| SmglM — mg) =|Smg) | LM — mg) (A.3)
[Smgy= 2 |symyspgmpXs,amysgmp|Smg) (A4)
my,mp
subject to the condition
my tmg =mg (A.5)

Substitution of (A.3) and (A.4) into (A.2) exhibits the nature of states of the
second kind of | S(s4, sg)LJM), insofar as it is a linear combination of the
direct product states |s m 4} sgmpg).

When equations (A.2)~(A.4) are substituted into (A.1), one gets

Pa,by=2 > 2 > LM —mg|LM — mg)
mg mgmy,my mpg, mp

X (S(s 4, sp)LIM | SmgLM — mg{SmgLM — mg|S(s4, sg)LJM)
x {SmgLM — mgls mysgmp)s m sgmpg|SmglM — mg)
x (sqmiy sy dlsymy Ysgmp|sg-blsgmg) (A.6)
where the sums are subject to condition {A.5) and
my +mg =mg=mg (A7)

Equation (A.6) can be simplified to give

P(a,b)= mZS<S(sAi ,Sp)LJM | SmgLM — mg)?

x > 2, ASmgLM — mg|samjyspmp)
my,my mp,mp

x(symysgmp|SmgLM — mg)smy sy dlsgmy)
x (sgmp|sg-blsgmp) (A.8)

With little manipulation, equation (A.8) can be put into a form that can be
suitably compared with the form deducible for a mean value of a correlation
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(Baracca et al., 1974) from a general theorem by von Neumann. To simplify
the task, let us remark that an integral number 7 can be put into a one-to-one
correspondence with the values that mg assumes varying between —5 and S,
We further observe that the relations (A.5) and {A.7) determine, at fixed i,
mg (mp) in terms of m 4 (m’y); that is, a single integral k; (k ;) determines
bOth my (m;l) and mB(Wlé), ie., ki - (mA: mB)mS, kl’ « (m:fb m}?)m 5-

We exploit this fact formally by putting

my =N, Mp =P
' ; A9
my =N,  Mp =Py (&.9)
and correspondingly, with fairly obvious notation
Isamad=len ),  lsgmp)=1p)
samp=longs  lsgmpy =1ty OO
Samy )= Ikpxktz ; Sgmpg) = Epkl:
We further write
sy d=A@), sg b= B(®) (A.11)

where the caret notation stresses the nature of quantum-mechanical operators
of A and B.

In this notation, the four sums over my4, m;, , Mg, mp reduce to two sums
over k; and k;. We further observe that the Clebsch-Gordan coefficients within
the latter sums are real numbers, depending upon i, k; and i, k;, respectively,
which can be written as the power 4 of positive real numbers Wi, Wi;. In this
notation, equation (A.8) can be rewritten as

- 2 1/2,,1/2 i S(R\ ! &
Pla, by = 12 Ci ki’zk,’ Wi Wi <<,07\k;.|«'4(a)‘Sﬁ}\kl.xépk;,lB(b)I ?.;pkl)
: (A.12)
where the coefficients
Cy=A8(s 4, sg)LIM | SmglM — mg) (A13)
are subject to the condition
>Cr=1 (A.14)

Equation (A.12) is strongly reminiscent of equation (2.8) of Baracca et al.,
(1976}, whose right-hand side reads

kzk wi 2w ong |A@)| ox X Ep o | BOY £y (A.15)

In fact, expression (A.15) proves to hold whenever the subscripts A and u are
linked by a linear relation of the form

L w=0 (A.16)

containing no further parameter. Equation (A.12) exhibits then two interesting
features: On the one hand it gives a realization of von Neumann’s result less
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trivial than the usual one discussed in connection with the Bohm-Aharonov
version of the EPR paradox; on the other hand it generalizes the result to cases
when condition (A.16) is superseded by a slightly more general condition such
as (A.5).

Form (A.15) is replaced, in the case of proper mixtures, by the expression

Ppryla, b) = % wilon, | zzi(a)f%k}(épklé(b)iép W (A.17)

where the subscript PR stands for “proper” mixture and the superscript recalls
that we are referring to the situation examined previously. It is immediately
concluded that, for the same situation, the P(a, b) of equation (A.12) must be
replaced by the expression

Pery(a, b)= 2 C2 ;? wkimkiui(a)lmkl_xgpkiué(b);gpkl)
! d (A.18)

It was proved in Baracca et al. (1976) that the combination of P(pr(a, b)
considered by Bell can never exceed Bell’s limit. The same combination for
Ppryla, b) will also satisfy Bell’s inequality as a consequence of (A.14).

It is thereby proved that for the situation examined in this paper proper
mixtures again cannot violate Bell—type inequalities.
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