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Abstrac t  

It is enquired whether a Bell-type inequality for nondicotomic observables established in 
a preceding paper can be a suitable tool for testing the prediction of quantum mechanics 
(Q.M.) concerning the correlations s A . d s B . b observable in a decay of an unpolarized 
particle of arbitrary spin into two massive particles A and B of spins s A , SB, respectively. 
It is found that such correlations cannot violate the inequality for spins of the subsystems 
larger than } and suggested that, apart from the possibility of finding different sensitive 
observables, feasible and real tests of QM against local hidden variable theories will prob- 
ably always imply photon processes, owing to the simplification introduced in the density 
matrix of the final state by the dicotomic nature of the photon spin variables. 

1. In t roduc t ion  

The corre la t ion ( a  A • d ~B"/~) (a and / )  are uni t  vectors  in two arbi t rary 
directions) observed in a decay o f  a spin-0 system with  two massive spin-½ 
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particles A and B as decay products  [as in the Einstein,  Podolski  and Rosen 
(1935)  - EPR - pa radox  in the version o f  Bohm and Aha ronov  (1957)]  has 
been shown by  Bell (1964)  to  satisfy an inequal i ty  in a theory  o f  local h idden  
variables (LHV).  Such an inequal i ty  has been proved  to ho ld  also when the 
correlat ions in ques t ion  are c o m p u t e d  as mean  values in mix tures  o f  quan tum 
mechanical  states o f  the first k ind  (Baracca et ai., 1975), while it  can be 
violated for suitable choices o f  the direct ions i f  they  are c o m p u t e d  in full 
quan tum mechanics  (QM). 1 E x t e n d e d  to the case o f  t w o - p h o t o n  decays or 
cascades (ei ther  in the singlet or  in the t r iplet  M z = 0 state),  2 Betl 's inequal i ty  
has been tested in exper iments .  The s i tuat ion is turning in favor o f  QM 

against Bell 's inequal i ty  (Kasday, 1971; F reedman  and Clauser, 1972; Faraci  
et  al., 1974; Hol t  and Pipkin,  1975; Clauser, 1976a, b; Lamehi -Racht i  and 
Mittig, 1975;  Fry and Thomson ,  1976; Wilson et al., 1976;  Bruno et al., 1977),  
but  it is no t  ye t  comple te ly  clarified, therefore  suggesting a broader  investiga- 
t ion o f  checks which  may  eventual ly  falsify or  verify QM in this special aspect.  3 

To this end an ex tens ion  o f  Bell 's inequal i ty  to nond i co tomic  observables 
wi th  a discrete and l imi ted  spec t rum was considered and shown to  ho ld  for 
mixtures  o f  states o f  the first k ind  as well as for local h idden  variables 
(Baracca et al., 1976), and an invest igation was started in order  to verify 
whether  a corre la t ion m a y  be found that  could  violate it. 4 The results o f  the 
above-ment ioned  paper  (Baracca et al., 1976) were as follows: 

(a) As far as the corre la t ion (s A "d s B" b)  is concerned,  i t  was again com- 
pu ted  as a first step for the special case o f  the  decay o f  a spin-0 system, 
but  now consider ing s A and s B to be arbitrary spins o f  the massive A 
and B particles. For  s implici ty,  moreover ,  s A = sB  was assumed and 
orbital  angular m o m e n t u m  neglected.  The ou t come  was that  in the 

1 This paper is a sequel to an investigation carried out in Baracca et al. (1976), to which 
we refer for the terminology. We recall that a state of the first kind is one that is a 
product of states of the constituent systems, and a state that is not a product is said 
to be of the second kind. In full quantum mechanics decay states, such as the ones we 
deal with, are described by states of the second kind and give rise, as far as the statistics 
of the observation on the subsystems is concerned, to mixtures of the second kind, as 
compared to proper mixtures or mixtures of quantum mechanical states of the first 
kind. 

2 The extension, although formally very simple, is not trivial, since the dicotomic nature 
of the photon spin is related to its zero mass. See, e.g. Bohm and Aharonov (1960). 

3 This aspect deals in fact only with the treatment of interacting systems as long as corre- 
lations are involved, and it could even not involve at all the other aspects of the theory. 
It is strictly related - through mixtures of the second kind - also with the "measurement 
problem", whose solution seems in fact incompatible with the linear character of the 
Schr6dinger equation for interacting systems. See also Baracca et at. (1975). 

4 We recall that dynamical models can be conceived, where spontaneous decays of the 
pure state of the composite system to a mixture may occur (Baracca et al., 1975; and 
Bohm and Hiley, 1976); these models would also be tested by Bell-type inequalities. 
The above spontaneous mechanism seems to be required in the light of the considera- 
tion that states of the second kind are requested for the description of local ized 
systems (see also footnote 2, page 474, in Baracca et al., 1976). 
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previous hypothesis such correlation cannot discriminate between QM 
and the Bell-type inequality for spins larger than ½. 

(b) In a completely general case (arbitrary values of the total angular mo- 
mentum of the decaying systems and of the spin and orbital momentum 
of the final state) a special set of  operators was found that allows one 
to distinguish between the two cases in any possible case. 

A full generalization of these results is needed. In what concerns point (b) 
the problem is to clarify the most general set of sensitive observables and a 
real experimental test in the best conditions. 

At present, we turn to point (a) and consider in tlfis paper a rather general 
extension of the investigation carried on in Baracca et al. (1976); namely, we 
deal with the correlation P(a; b) = (JMI SA "d s B • b I JM) observable in a decay 
of an unstable particle of arbitrary spin (J, 3/) into two massive particles A 
and B of spins SA, SB, respectively (s A being in general different from sB), 
taking into account orbital angular momenta. Bell's inequality extended to 
this case reads (Baracca et al., 1976) 

IP(a, b) - P(a, c)l +- [P(a', b) + P(a', c)] ~< 2sAs B (1.1) 

For mixtures of states of the first kind or LHV this inequality has to be 
satisfied, whereas in QM there might be an appropriate choice old,  b, ~, d' 
that leads to a violation. When this is not the case, the observable we are con- 
sidering does not allow a good test of QM in the sense of Bell's inequality. 
Computation of the P(a, b)'s implies evaluating the mean value of variable 
s A • dsB" b in a state IJM) of the two-body decay products, hereafter to be 
referred to as I JM)f ( f  for final); for a given initial state of the decaying system, 
I JM)i, transitions to I JM)f states can be classified according to the different 
values that the channel spin S(S = SA + SB) and the relative orbital angular 
momentum L may assume in the transition, even when parity conservation is 
requested. The choice of this coupling scheme is first suggested by the fact 
that the correlation does not involve orbital angular momenta; its practical 
usefulness arises also from the fact that in general the decay is dominated by 
the transition in a channel with given L and S: This is, at least, a realistic 
hypothesis if, e.g., spin orbit or tensor potentials are not very relevant in 
the final state interaction (FSI) and in general when L-S  coupling is good 
(e.g., SU4 in nuclear physics or SU 6 in particle physics). The importance of 
this assumption arises from the factorization it allows of physics and geometry, 
as will be shown in the next section. In this paper we limit ourselves to con- 
sidering the decay of an unpolarized system. 

Under the above conditions and assumptions it is proved that again, for the 
operator considered here, Bell's inequality cannot be violated by QM for spins 
of the subsystems larger than ½. This general result is linked to the fact that the 
density matrix describing the final state depends on the number of independent 
parameters which is rapidly increasing with the spins of the subsystems; a larger 
set of observations than involved by Bell's inequality is therefore needed to 
determine the density matrix and hence discriminate between QM and LHV. 



494 BARACCA ET AL. 

The effectiveness of  the checks based on experiments involving photons is 
due to the simplification introduced in the density matrix by the dicotomic 
nature of the photon spin variables. Feasible and real tests of QM will thus 
probably always imply photon processes. Extensions of the class of photon 
experiments already considered with this aim, along the lines discussed in this 
paper, are being considered, together with a more thorough search of different 
sensitive observables. 

2. The Roles o f  Dynamics and Geometry in the Evaluation o f  the P(a, b)'s 

Concerning the evaluation of the P(a, b)'s, we stress that there is an inter- 
play between dynamics and geometry if the F.S.I. is properly taken into 
account, the dynamics affecting the weight and phase of the various (L, S) 
channels. Under the hypothesis discussed in the Introduction, however, the 
dynamics simply factorizes and drops out, if normalized correlations are duly 
considered and computed as 

Tr[PsA • ~ s B" b] 
P(a, b) = (2.1) 

Tr p 

where p = I JM)f f  (JMt is the density matrix describing the decay products. 
The above hypothesis can in fact be formalized as follows. If  the decay 

process is "weak," and described by the Hamiltonian H w, one can write 

[JM)f = gZ (-)? Hw I JM>i (2.2) 

where 

1 
~ ( - )  = 1 + V~2 (- )  (2.3) 

E -  Ho - ie 

and H 0 is the free Hamiltonian of the initial and final particles and V the 
final-state "strong" interaction Hamiltonian (Watson, 1952; Gell-Mann and 
Goldberger, 1953; examples are given in Sakurai, 1964). We can then develop 
the state IJM)f into the complete set IS(SA, SB)LJM): 

[£gl}f = ~ [S(s A , SB)LJM}{S(s A , SB)LJM lgZ(-)Hw[JM>i (2.4) 
L,8 

Now, if the dynamics is such as to lead to a dominance of the transition in 
a channel with given L and S, we can write 

[JM)f = I S(s A , sB)L JM) " d ~  (2.5) 

where 

fJ]lff = ( S (S  A ' S B ) L  JM i EZ(-)Hw[ JM )i (2.6) 

contains all the physical information. The density matrix for the decay products 
can then be written 

.cJM 2 JM  (2.7) 
P = J L S  " P L S  
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with 

JM PLS = [ S(sA , sB)L JM)(  S(SA , SB)L J M  l (2.8) 

When (2.7) and (2.8) are substituted into (2.1), the dynamics drops out and we 
get 

P(a, b ) = Yr [pJsM s A "d SB " D ] = ( S(s A , s B)L J m  [ s A • d SB" D [ S(SA , S B)L J m  ) 

(2.9) 

We are thus left with the pure geometrical problem represented by equation 
(2.9). 5 This feature is an essential requirement for the generality of our calcu- 
lation, although some specific study of a particular process may certainly 
reveal the relevance of the interesting interplay between physics and geometry. 

3. General Structure o f  the Correlation Funct ions  

It is convenient to work with spherical components. Following the convention 6 

s+_ = ~½(s x +-iSy), So =Sz (3.1) 

we have 

e(a, b) = (S(SA , SB)L J M  l [ -  ½s A +s B_ (2" d - i`9" a )(2 " b + i9" b) 

- ½SA_SB+(~" ~ + i`9. a)(2" ~ - i2" i~) 

+ SAo SBo fi-," (lZ" b ] [ S(SA, S A )L J M )  (3.2) 

where we have introduced the basis vectors 2 , 9 ,  2; the Cartesian frame may 
of course be fixed referring to any two of the physical vectors of the problem 
in a given order, for example, any couple of the directions appearing in (1.1), 
but is otherwise completely arbritrary. Note that terms such as SA+ SB+ or 
SA_S B_  do not appear in (3.2): This is due to the fact that the correlation 
does not  involve orbital angular momenta,  which causes the third component 
of the total spin m s = ms A + ms B to be conserved. 

The terms in equation (3.2) may be rearranged as follows: 

P(a, b) = ( S(sA , s B)L J M  [ [ -  l ( s  A +s B_ + s A _ SB+ )d" 

-- (i/2)(SA+S B_ -- SA_SB+)(2" dg" D - 9 .  dl2. b) (3.3) 

+ I(SA+S B_ + SA SB+ + 2SAoSBo)~" dl~" D]IS(SA, SB)LJM)  

5 One may wonder whether in this problem we still have to deal with states of the second 
kind. In fact, owing to the dynamical assumption made, such states cannot have any- 
thing to do with the composition of S and L. They do, however, arise when coupling of 
the spins SA, s B to give the channel spin S is considered; it can be shown (see the 
Appendix) that if states of the second kind are replaced by mixtures, a Bell-type inequal- 
ity can be established. 

6 Hereafter we follow the conventions used by Brink and Satchler (1968). 
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This expression emphasizes the vector and tensor nature of the second and 
third term, respectively. Indeed, if the expressions of  the products of  spheri- 
cal vectors in (3.3) are solved for the irreducible tensor components,  one 
obtains, in obvious notation, 

T(o °) = (1/X/~)(SA+SB_ + SA_SB+ -- SAoSBo ) (3.4a) 

T (2) = (1/N/-6)(SA+SB_ + SA_SB+ + 2SAoSBo ) (3.4b) 

T(o 1) = ( I / N / 1 2 ( S A + S B  - - -  SA_SB+ ) (3.4C) 

We can then write 

P(a, b) = (S(SA, SB)LJMt { -  {(1/N/3)(v~T (2) + 2T~°))d ./) 

- ( i /2)Vf f r (o l ) (s~ .ay ,  • i~ - y , .  a ~ .  b)  

+ (N/6/2)T(2)~ • St2" b}IS(SA, SB)LJM) 

The matrix element of  T O) vanishes because 

(3.5) 

(S(s A , SB)ll T(1)tJ S(s A, sB))= [(2S + 1)3(2s A + 1)(2s B + 1)] 1/2 

Is i t 
X, S A S A .(SAIISAIISA). (SBI[SBJiSB) 

SB S B 1 ) 

(3.6) 

but the 9-]" symbol vanishes, as may be seen by interchanging the first two 
columns and taking into account the fact that 2(S + s A + SB) is always even. 

Hereafter we shall consider the decay of an unpolarized system, which 
implies averaging over M. Then also the contribution of the matrix element 
of  T (2) vanishes, as may be seen by applying the Wigner-Eckart theorem, 
which reads 

1 
(JMJ T~o~)IJM)f" = 

2 / + t  
- - "  (Jll T(e)II J)" (J2MOtJM) (3.7) 

where 

3M 2 - J(J + 1) 
(J2MO[JM) = [ ( 2 J -  1 ) J ( J +  1 ) (2J+  3)] 1/2 (3.8) 

When summing over M, 3M 2 - J(J + 1) averages out to zero. 
We are therefore left with the simplified expression 

P(a, b) = t T(O)IS(SA,SB~JM)d. D (3.9) I ~ ( S ( S A , S B ) L J M i - - ~  
2 J + 1 M  
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Inserting complete sets of  the states I S m s L M  -- ms )  and taking into account 
that To (°) does not act on the orbital components, one can rewrite equation 
(3.9) as 

1 
fi(a, b) = 2J  +~1" E [(SLJM I S m s L M  - ms )  12 . 

M,m~ 

But 

I ( S L J M I S m s L M - r n s ) l  2 = 1 (3.1I)  
ms 

whilst 

(S(s A , s B ) m s l  T(o°)[ S(SA, s B ) m  s)  

= (S(s  A , SB)I T(o °) IS(s A , SB)) = (1/X/~)'} [S(S + 1) - s A (s A + 1) - SB(S B + i)] 

(3 .12 )  

which can be thought of  as arising from 

T~o °~ = - ( 1 /x /~ ) sA  • sB (3 .13 )  

and 

S(S+l  ) ........ SA(S A + 1)--SB(SB + 1) 
SA'S B = (3.14) 

2 

(when the eigenvalues are considered). So that we get finally 

~ 9 ( a , b ) = - ~ [ S ( S +  1) - -SA(S  A + 1)--SB(S B + [)]a ' t~ (3.15) 

In the case of a spin-0 particle decaying into two spin-½ particles, we have 
fi(a, b) = a f t .  b, a result that can be checked at once by direct computation. 
For two particles of  spin ] coupled to zero, fi(a, b) = - ½ j ( j  + 1)d" b as found 
in Baracca et al. (1976). 

4. Bell-Type Inequali ty 

When expression (3.15) is substituted into Bell's inequality, equation (1.1), 
one obtains 

i t S ( S +  I ) - -  SA(S A + 1) - -  SB(SB + 1)l { l d ' t S -  d ' d l -  + [d" D + d "  d]} <~2sAs B 

(4 .1 )  

where the amplitude of  the function depending on S, SA, S B can be factorized 
with no loss of  generality. It is also easily checked that for integral or half- 
integral S, SA , s B satisfying [ S A -- s B 1 ~ S <~ s A + s B the above function can 
never vanish, except for the trivial case S = s A = s B = 0, as can be physically 
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understood on the basis of  the vector model. Equation (4.1) is suitably 
re'#ritten as 

[d- (t5 - d)[ + [d' "(/~ + d)] ~ f ( S ,  s A , SB) (4.2) 

where we have posed 
12s A s B 

f ( S ,  s A , SB) = (4.3) 
I S ( S +  I ) - - S A ( S  A + 1 ) - - S B ( S B +  1)t 

It is easily checked, as was realized in Baracca et al. (1976), that the left-hand 
side of  equation (4.2) is limited by - 2X/2 and 2x/2, the maximum being 
reached with the four vectors coplanar, d ± d ,  b L c and the frame d, d' 
rotated zr/4 with respect to the frame/~, d. 

It shall then be possible to violate Bell's inequality, equation (4.2), for 
certain configurations of  the vectors d, ~ ' , /) ,  ( ,  if the (positive) quantity 
f ( S ,  SA, sB) can turn out to be less than 2x/2 for given values of  S, sA,  s s 
satisfying the triangular inequalities. 

We check at once that, for the case of  two ½ spins coupled in a singlet 
state, f =  2; in this special case we thus find again that the inequality can be 
violated. If, on the other hand, the two spins couple in a triplet s t a t e , f=  6 and 
the inequality cannot be violated for whichever choice of  the angles. 

More generally, we can reason as follows. If  s A = s B =L s = 0 

f = 6]/(] + 1) 

so that, except for the ½ case already examined, f always exceeds 2x/2. If  on 
the other hand, S A ¢  SB, say s A > SB, we observe that at fixed SA and S B , f  
shall vary between a minimum and a maximum value while S takes on the 
values allowed by the triangular inequalities. In particular, the miminum value 
is attained for the value o r S  that maximizes the denominator in (4.3), that is 
S = s A  +s B when S(S + 1 ) > S A ( S  A + 1) +SB(S B + 1 ) , S = S A  - S B when 
S(S  + 1) < s a (s A + 1) + sB(s B + 1). But we have, in the first case, f = 6, in the 
second c a s e f  = 6 SA/(S A + 1). 

We can then conclude that, except for the case already studied, inequality 
(4.2) can never be violated. 

This conclusion can be stated in an expressive way, if the case of  targe s A 
and s B, and also of  large S, is considered. For this case of  large quantum numbers, 
we can put (S(s  A sB)[s  A • sB[S(SA sB)) = SA SB COS (L4"-~B)- Then, making use o f  
equation (3.15), equation (4.2) can be cast into the form 

I cos (g-'A~B) J " { [t~'(b -- d) + [c~'. (l) + d)] } ~< 6 (4.4) 

A violation of  the generalized Bell's inequality would then imply 

c o s  > 

A c k n o w l e d g m e n t s  

We thank A. Cornia and R. Livi for a discussion concerning the matter dealt with in 
the Appendix. 
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Appendix  

We start from 

P(a, b ) = ( S(SA, sB)LJM t sA" d SB" D [ S(SA, S B)LIM ) (A. 1 ) 

The state [ S(sA,  SB)LJM) can be analyzed in two steps; first, one can write 

[S(SA, SB)LJM) = ~ [ S m s L M  - m s ) ( S m s L M -  m s  [SOA, SB)LJM) 
ms (A.2) 

the states I S m s L M -  m s )  can be further analyzed as follows: 

[ S m s L M  - m s )  = ] Sm s )  [ L M  - m S) 

t Sm s )  = 
mA, rnB 

subject to the condition 

I SA mA SBmB )( SA mA SBmB i Sins ) 

(A.3) 

(A.4) 

m A + m B = m S (A.5) 

Substitution of  (A.3) and (A.4) into (A.2) exhibits the nature of  states of  the 
second kind of  [ S(SA, SB)LJM) , insofar as it is a linear combination of  the 
direct product states Is A rn A )1SBm B).  

When equations (A.2)-(A.4) are substituted into (A. 1), one gets 

P ( a , b ) =  ~ ~ ~ ~ ( L M - m ' s [ L M - m  s )  
m S m'SmA,m]4 m R , m' B 

X (S(SA, SB)LJM[Srn'sLM - m ) ) ( S r n s L M  - m s [S(SA, SB)LJM) 

x (Sm'sLM - m's[ SAm~4sBm'B)(SAmASBmBISmsLM -- m s )  

x ( SAm' A I SA" d[ S A m A )(sBrn ~ I SB" D I SBmB) (A.6) 

where the sums are subject to condition (A.5) and 

¢ "t-  ! t mA Fn B = m S = m S 

Equation (A.6) can be simplified to give 

P(a, b) = ~ (S(s A , sB)LJM [ S m s L M  - m s )  z 
ms 

(A.7) 

With little manipulation, equation (A.8) can be put into a form that can be 
suitably compared with the form deducible for a mean value of  a correlation 

x ~" ~ , ( S r n s L M -  mS[sArn~4sBm~) 
rnA ,rnjA roB, mB 

x (SAm~SBm B t S r n s L m -  rns ) ( sAm '  A J sA "Ct[SAmA ) 

x (sBm'B I SB" b ISBmB) (h.8) 
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(Baracca et al., 1974) from a general theorem by yon Neumann. To simplify 
the task, let us remark that an integral number i can be put into a one-to-one 
correspondence with the values that m s assumes varying between - S  and X 
We further observe that the relations (A.5) and (A.7) determine, at fixed i, 
m B (re'B) in terms of  m A (m'  A);  that is, a single integral k i (k 'i) determines 
both m A (re'A) and mB(m~) ,  i.e., ki ++ (mA,  roB)ms, k~ ++ (re'A, m'B)m s" 

We exploit this fact formally by putting 

m A = ~ki , mB = pk i 

(A.9) t t 

rnA = Xk~, mB = Pk} 

and correspondingly, with fairly obvious notation 

tSAmA )= I~oXki), tSBmB) = t ~OX i) 
(A.10) 

IsAm' A ) = [ ~oxk~), ]SBm'B) = [ ~pk~) 

We further write 

sa sB'a = k(b) (AA1) 

where the caret notation stresses the nature of  quantum-mechanical operators 
of,4 and/?. 

? t 
In this notation, the four sums over m A ,  m A , roB, m B reduce to two sums 

over k i and k~. We further observe that the Clebsch-Gordan coefficients within 
the latter sums are real numbers, depending upon i, k~ and i, ki,  respectively, 
which can be written as the power i of  positive real numbers wk~, wki. In this 
notation, equation (A.8) can be rewritten as 

i ki,k~ (A.12) 

where the coefficients 

Ci =- (S(SA , SB)LJM t S rnsLM - m s  ) (A. 13) 

are subject to the condition 

Z Ci 2 = 1 (A. 14) 
i 

Equation (A. 12) is strongly reminiscent of  equation (2.8) of  Baracca et al., 
(1976), whose right-hand side reads 

E 1/2 1/'2 ^ w k w k, (~Oxk, l A ( a ) t ~ x k ) ( ~ p # l B ( b ) [ ~ p  k) (A.15) 
k ,k '  

In fact, expresfion (A. 15) proves to hold whenever the subscripts X and p are 
linked by a linear relation of the form 

f(X, p) = 0 (A. 16) 

containing no further parameter. Equation (A, 12) exhibits then two interesting 
features: On the one hand it gives a realization of yon Neumann's result less 
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trivial than the usual one discussed in connection with the Bohm-Aharonov 
version of  the EPR paradox; on the other hand it generalizes the result to cases 
when condit ion (A. 16) is superseded by a slightly more general condit ion such 
as (A.S) .  

Form (A. 15) is replaced, in the case of  proper  mixtures,  by the expression 

P(~R)(a, b) = Z Wk(~xkl~t(a) i~Xk)(~pktB(b)l~p k) (A. 17) 
k 

where the subscript PR stands for "proper"  mixture and the superscript recalls 
that  we are referring to the situation examined previously. It is immediately 
concluded that, for the same situation, the P(a, b) of equation (A.12) must be 
replaced by the expression 

P(pR)(a, b) = ~. Ci 2 ~ wki(~pxk, A(a) ~xg)(~pg I/}(b) ~Pki ) 
i gi (A. 18) 

It  was proved in Baracca et al. (1976) that the combination of  P(~eR)(a, b) 
considered by Bell can never exceed Bell's limit. The same combinat ion for 
P(eR)(a, b)  w411 also satisfy Bell's inequality as a consequence of  (A. 14). 

It is thereby proved that for the situation examined in this paper proper  
mixtures again cannot  violate Be l l - t ype  inequalities. 
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